
Development Framework for Supporting Java NS2
Routing Protocols

Ulrich Herberg
Team Hipercom, LIX – UMR CNRS 7161

Ecole Polytechnique
France

Email: ulrich@herberg.name

Ian Taylor
School of Computer Science

Cardiff University
UK

Email: Ian.J.Taylor@cs.cardiff.ac.uk

Abstract—This paper presents a framework for developing
and executing Java routing protocol implementations within the
network simulator NS2. NS2 provides extensive support for
developing C++ routing protocols, but has no Java support. In
this paper, we describe extensions we have made to the AgentJ
toolkit that enable routing protocols to be integrated directly
into NS2 without needing to extend the internals of NS2 for each
new protocol. The framework defines a reusable AgentJ routing
protocol definition that can be used to register new protocols
dynamically from within Java code. The actual routing protocol
can then leverage the AgentJ toolkit for executing unmodified
Java applications in NS2. By means of aspect-oriented byte-
code rewriting, AgentJ allows preexisting Java routing protocols,
which run on the Internet, to run unmodified within NS2.
This powerful system also helps researchers to both understand
high-level and algorithmic properties of a given Java routing
protocol through the analysis of an NS2 simulation and to rapidly
develop and debug new routing protocols through prototyping
and experimentation.

I. INTRODUCTION

An important step when designing and developing a new
routing protocol is often to verify its behavior in a network
simulator, such as NS2 [1]. While network simulators have
their limits, especially in terms of the fidelity of the lower
layers and, for wireless network interfaces, the fidelity of
the propagation model used for representing the behavior of
radio waves, their use facilitates the understanding of high-
level and algorithmic properties of a given routing protocol. In
particular, in the area of Mobile Ad Hoc Networks (MANETs),
simulations are often easier to perform than building a large
testbed network of nodes, simulating mobility, and guarantee-
ing the reproducibility of predefined scenarios. Using NS2,
scenarios can be defined to simulate not only the network
traffic but also the underlying mobility patterns that affect
signal strengths between nodes as the scenario progresses.
However, NS2 requires that a routing protocol is implemented
in C++, which not only restricts a programmer’s language
choice but also limits the simulations that can be performed
for a specific application to be tested; that is, NS2 requires
developers to discretize their application into a sequence of
events for simulation, rather than running actual code.

Recently, however, there has been a toolkit, developed by
the Naval Research Laboratory (NRL), called AgentJ [2],
which allows Java applications to be run unaltered within

NS2. AgentJ is a set of instrumentation classes that en-
able unmodified Java applications, which currently run on
conventional networks and operating systems such as Linux
or Mac OS, to be used within an NS2 simulation. AgentJ
uses a combination of Java bytecode rewriting and aspect
oriented programming techniques, to convert socket, I/O and
timing APIs into low-level C++ methods that bind to the
various NS2 counterparts. AgentJ therefore takes an “as-is”
Java multithreaded application and converts it into a thread-
synchronized “serial” NS2 version, capable of running within a
single-threaded discrete time network simulation environment.
However, AgentJ originally only targeted the application layer
agents, and did not consider the encapsulation of the NS2
routing agents as well. In this paper, we discuss the extensions
we made to the AgentJ architecture, which enable it to use Java
routing protocols within the NS2 environment and illustrate
this routing architecture through the use of specific examples
that show how to instantiate and run a new Java routing
protocol implemented in NS2.

The paper is organized as follows: After describing related
works in section II, and explaining the basic functionalities
of AgentJ in section III, section IV details how to use the
presented routing protocol extension to AgentJ. Section V
describes the architecture of the extension. Section VI analyzes
the performance of the extension, and section VII summarizes
the features of AgentJ with the extension.

II. RELATED WORK

Network simulations of routing protocols or extensions
thereof represent an important part of research in the area
of MANETs. According to the survey conducted in [3],
75% of all publications at the MobiHoc conference in the
years 2000 to 2005 contain empirical results obtained using
network simulations; and further, 44% of which used NS2
simulations. While network simulators have known limitations,
they provide a quantitative empirical means of enabling better
understanding high-level and algorithmic properties of routing
protocols. Due to the importance of analyzing routing proto-
cols in network simulators, it is crucial that the results from
the simulation are also adequate for real networks. AgentJ, in
this respect, represents a clear novelty, because it allows the
simulation of a Java routing protocol implementation, which is

the exact same code that will be deployed onto a real network.
Therefore, AgentJ allows to measure actual working code,
rather than discrete approximations that are converted into a
non-threaded discrete network simulation environment in order
to meet its specific format.

AgentJ builds on a tool named Protolib [4], which in some
respects has similar properties to AgentJ but targets C++
applications instead. Protolib provides an abstraction layer for
C++ classes, representing sockets, timers and IP addresses in
an abstract and reusable fashion. A C++ application using
the Protolib API, can be ported between operating systems
e.g. MacOS, Linux and Windows, or to network simulators
(OPNET and NS2). However, a routing protocol needs to
be re-implemented to use the Protolib APl and cannot use
the standard C calls for sockets and timers, etc, and also,
although Protolib exposes its API in Java, it does not support
unmodified Java code, and any Java application would need
to be rewritten to use this API instead.

In the Java world, there are three popular Java-based simu-
lators: JNS [5], JiST [6], and J-Sim [7]. In many ways, these
simulators provide similar environments to AgentJ. However,
they suffer in two main respects. First, they only support
a fraction of the transport protocols and environments that
the NS2 framework implements, whereas AgentJ leverages
the full stack of NS2 protocols. Second, these are Java-only
systems, and thus cannot be extended to support protocols
in other languages, such as C++. In AgentJ, a protocol can
be implemented in Java or embedded into NS2 in C++ and
accessed from within AgentJ. Lastly, neither J-Sim nor JNS
allow unmodified distributed Java code to run within their
simulator, and although JiST allows unmodified Java code,
its current set of supported protocols and environments are
limited.

III. AGENTJ OVERVIEW WITHOUT ROUTING
FUNCTIONALITIES

AgentJ [2] is an environment that facilitates the running
of Java applications as application agents within the NS2 [1]
simulator. By default, NS2 only supports simulations running
either C++ or TCL or a combination of the two. AgentJ builds
on this environment to provide a linkage between the NS2
TCL simulation orchestration commands and Java, which then
in turn marshals the Java network, timing and System classes
into Protolib method invocations. The various levels are shown
in figure 1.

The class translating, where possible, is contained within
Java e.g. Thread handling, NIO, Monitors, concurrent sup-
port, etc. However, network sockets, system time, timers and
addresses are accessed through low-level calls using to the
underlying C++ code. The implementations facilitates two-
way transfers from Java to C++ and C++ to Java, allowing
the creation of a Java Virtual Machine from the C++ side and
for Java to talk to the underlying C++ objects. A callback
system between the C++ (and OTcl) side of NS2 and Java
is set up by AgentJ for interaction between NS2 and the
Java implementation. Thread handling in AgentJ is managed

Protolib Key

Instrumentation and Java Byte Code Rewriting

Distributed Java Application

NIO Binding

System Time and TimersSockets

De-Threading

DNS Address Translation

Java Util ConcurrentMonitors

Logging

JNI Bindings

Modules

ProtolibProtoTimersProtoSocket (UDP, Multicast, TCP)

Addressing

ProtoAddress

NS2Ns TimersNS Transport Protocol Agents Ns Addresses

NS2AgentJ

AgentJ

Java Application

Figure 1. AgentJ architecture outlining its various components

within the rewritten marshaled classes, which performs thread-
synchronization on the multiple Java threads. This allows
an unmodified Java multi-threaded application, the norm in
Java, to be converted into a single-threaded Java applications
for simulation. For a detailed description of the rewriting
mechanism of AgentJ, refer to [8].

IV. AGENTJ JAVA ROUTING PROTOCOL EXTENSION

This section illustrates how an existing Java routing protocol
implementation can be run on NS2, using the extension that
is presented in this paper. Figure 2 depicts the basic routing
architecture of a Java application running on a single NS2
node over AgentJ.

Helper Class
(entry point)

Java routing
protocol

implementation

Timer calls + Control packets

Ns2

AgentJ

Part 1 Part 2 Part 3

getNextHop()

getRoutingPort()

executes

command()

Figure 2. Architecture of an AgentJ agent attached to an NS2 node

Part 1 in the figure shows the NS2 node and the AgentJ
agent that is attached to that node, provided by AgentJ. Part
3 depicts the Java routing protocol the user wants to run in
NS2. Since AgentJ automatically rewrites the Java bytecode,
the Java routing protocol implementation itself does not need
to be changed. However, an additional component is needed to
provide the “glue” between the Java implementation and the
NS2 routing layer, which is depicted in part 2. This linkage is
provided by our framework to allow dynamic mapping from
multiple Java routing protocols to a single generic AgentJ
routing protocol in Ns-2. Further, a message-passing interfaces
is provided to allow direct communication with this routing
layer, described in more detail in the next section.

A. Implementation of the Helper Class

The helper class serves the same purpose as the main method
of Java applications: to allow NS2/AgentJ to “execute” the
routing protocol implementation. In addition, the helper class

provides an interface with three methods, called by NS2 for
the purpose of routing. All other calls, such as for sending
and receiving control packets or setting timers, are directly
hooked into NS2 and do not need any changes in the Java
routing protocol implementation or in the helper class.

The Java helper class (in the following example called
MyRoutingAgent) should look as the following:

public class MyRoutingAgent extends AgentJAgent
implements AgentJRouter

The following three methods must be provided by
MyRoutingAgent:

• public int getRoutingPort()

This method should return the UDP port number that
the Java routing agent is running on. This can be any
number between 0 and 65535. NS2 will send control
traffic packets to that port, and the Java routing protocol
should receive control traffic from that port.

• public int getNextHop(int destination)

This method will be called from NS2 whenever a unicast
data packet arrives at the node. The Java method should
return the next hop for the given destination (as an NS2
node ID) or -1 if no such destination has been found in the
routing table. If the Java routing protocol implementation
uses real IP Addresses (i.e. “java.net.InetAddress”), this
method must perform a mapping between these two
address types. An exemplary mapping is:
InetAddress.getByName("0.0.0." + destination)

• public boolean command(String c, String[] args)

The command() method evaluates the given command and
its arguments. The minimal prerequisite of this function
is that it allows to start the routing protocol. In the before-
mentioned example, calling the command startRouting

would start the Java routing protocol. Optionally, any
other command can be added in the command() method,
such as for outputting the routing table as in the following
example:

boolean command(String command, String[] args) {
if (command.equals("startRouting"))

// a method needs to be added here
// to start the routing protocol
return true;

else if (command.equals("print_rtable"))
// code needs to be added here to
// output routing table
return true;

return false; }

B. Installation of the Java Classes
In order to run the Java routing protocol, AgentJ has to find

the corresponding class files. The location of the Java classes
of the routing protocol must be added to an environmental
variable called AGENTJ_CLASSPATH, e.g.:
export AGENTJ_CLASSPATH=.:/path/to/classfiles

C. Scenario Tcl Script
The scenario Tcl file that is called by NS2 must tell AgentJ

which Java routing protocol to use. Note in particular the

following lines, specific to using a routing protocol with
AgentJ, that represent a minimum set of parameters that have
to be defined in the Tcl script:

1) Define the routing agent:
set opt(rp) AgentJ ;# Routing Protocol
$ns_ node-config -adhocRouting $opt(rp) \
...

The routing agent is set to “AgentJ” whatever Java rout-
ing protocol is used. This avoids adding a new routing
protocol in NS2.34/tcl/lib/ns-lib.tcl for every new
Java routing protocol implementation.

2) Attach the Java agent to a node
set node [$ns_ node] ;# create a new node

The following line must be changed to reflect
the name of the Java class.
[$node set ragent_] attach-agentj \

my.personal.MyRoutingAgent

The following lines need not to be changed
[$node set ragent_] agentj setRouterAgent \

Agent/AgentJRouter
$ns_ at 0.0 "[$node set ragent_] \

agentj startRouting"

The parameter my.personal.MyRoutingAgent must be
changed to the name of the Java class name of the helper
class that has been added (as described in section IV-A).

D. Change Addressing Scheme

The $AGENTJ/conf/agentj.properties file has to be mod-
ified as follows:
#java.net.preferIPv4Stack=true #or
#java.net.preferIPv6Stack=true

In order to use unicast addresses in the routing protocol, the
line that corresponds to the preferred address family (IPv4 or
IPv6) needs to be uncommented. Note that this modification is
to the config files, read at execution time, and so do not require
recompilation of neither AgentJ nor NS2 nor the routing
protocol implementation.

E. Running the NS2 Simulation
The NS2 simulation can be started by launching:

ns my-sample-script.tcl

V. ARCHITECTURAL MODIFICATIONS OF AGENTJ FOR
SUPPORT OF ROUTING PROTOCOLS

This section details which architectural changes have been
made to in order to support running a Java routing protocol
within NS2, depicted in figure 3. On the lefthand side, the
NS2 and AgentJ internal objects (Agentj and AgentJRouter)
are depicted. These are implemented in C++ and use some
OTcl code.

On the righthand side, the Java helper class that connects
the Java routing protocol with AgentJ is displayed. This helper
class is a subclass of AgentJAgent and implements the Java
interface AgentJRouter.

In the original AgentJ code, the Agentj C++ agent was
attached as an application agent to the NS2 node. In contrast,
in the modified version of AgentJ with routing functionalities,

Agentj
object

Ns2
node

Helper Class
(entry point)

extends
AgentJAgent

implements
AgentJRouter

Java routing
protocol

implementation

getNextHop()

getRoutingPort()

Timer calls + control packets

AgentJRouter
object

OTcl / C++ Java

Figure 3. Modified architecture with an AgentJRouter interface

the Agentj C++ agent can now also be attached to an NS2
node as a routing agent (i.e. it represents the RTR layer). The
AgentJRouter C++ class treats packets that arrive at the RTR
layer.

Receive pkt
at Agentj

Forward to
AgentJRouter

Forward to de-
multiplexer on node

Is
control
traffic?

Forward to socket in
Java routing protocol

No Yes

Figure 4. Incoming packet on the RTR layer

Incoming packets are received by the Agentj object, and
then handed off to the AgentJRouter object (as illustrated in
figure 4). If the packet is a control packet, it will be handed to
a socket on the Java routing protocol. Otherwise, the packet
will be treated by the demultiplexer as usual.

Whenever an outgoing packet arrives at the RTR layer
(i.e. the Agentj object), it is forwarded to the AgentJRouter

object (as illustrated in figure 5). Then it has to be determined
whether the packet is unicast or broadcast. If it is a broadcast
packet, the destination is set to the IP_BROADCAST address and
handed to the LL layer. If the packet is a unicast packet, the
getNextHop() method on the Java routing protocol is invoked
to determine the next hop of the packet. If no next hop if
found, the packet is dropped by NS2. This is reflected in the
NS2 tracefile as usual (DROP). Otherwise, the next hop is set
to the returned next hop, and the packet is handed to the LL
layer.

Receive pkt
at Agentj

Forward to
AgentJRouter

Set next hop to
IP_BROADCAST

Is
unicast

?

Call getNextHop() on
Java routing protocol

NoYes

Forward to
link layer

Set next hop to
return value

Found
nexthop

?

Drop
packet

No Yes

Figure 5. Outgoing packet on the RTR layer

Note that this represents the default behavior of
AgentJRouter for incoming and outgoing packets, and may
be overridden by the user.

VI. PERFORMANCE COMPARISON

This section presents a performance comparison between a
Java protocol implementation using AgentJ, and a C++ agent.
The comparison investigates the time duration and memory
consumption of running an NS2 simulation with the respective
C++ and Java protocols, performed on a PC with a Core2 CPU
2.1 GHz and 4 GB RAM, with no other time- or memory-
consuming processes running.

For this comparison, a basic link state routing protocol
has been implemented in both Java and C++. The C++
implementation uses the Protolib [4] API. In order to provide
a fair comparison, both versions of the protocol have been
implemented as similarly as possible, in terms of structure of
the code as well as data structures. The algorithms used are
exactly identical (e.g. identical complexity of Dijkstra). It can
thus be assumed that both version of the protocol have very
similar properties and are well suited for the comparison.

Figure 6 depicts the average time consumption for a single
simulation run of the link state routing protocol from 20 to 80
nodes, using the C++ implementation and the Java implemen-
tation respectively. Figure 7 shows the memory consumption
of both versions, averaged over 20 runs.

 0

 100

 200

 300

 400

 500

 600

 20 30 40 50 60 70 80

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s

Number of nodes

C++

Java

Figure 6. Average CPU time for a single simulation on NS2 with both a
C++ and a Java implementation of a link state routing protocol

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

M
em

or
y

co
ns

um
pt

io
n

in
 M

by
te

s

Number of nodes

C++
Java

Figure 7. Average physical memory consumption for a simulation run on NS2
with both a C++ and a Java implementation of a link state routing protocol

As can be seen, the Java simulation takes more time and
memory than the C++ implementation. This is due to several

factors: First, it is commonly observed that Java is slower than
C++ for identical tasks and consumes more memory, so the
link state routing protocol itself will be slower. In addition,
the thread linearization and bytecode translation for hooking
Java commands into NS2 is costly.

It can be observed that the memory consumption difference
between the Java and C++ run is almost constant, and the CPU
time difference is proportional to the number of nodes. Since
commonly simulations are executed by a batch file and can run
unattended, e.g. over night, the additional time consumption
of Java protocols in AgentJ is acceptable in many cases.

VII. ADVANTAGES OF AGENTJ ROUTING FRAMEWORK

The basic version of AgentJ, as described in section III is
limited to the application-level agents in NS2 and does not
support the execution of Java routing protocols. The modifi-
cations presented in section V extend AgentJ’s applicability by
allowing Java routing protocol implementations to be executed
within the same environment in NS2. The main features of this
framework are listed in the following:

– Write once, run everywhere: One of the major advantages
of Java is that Java bytecode runs on all systems offering a Java
Virtual Machine, while the behavior is always the same, which
is a very useful property for protocol deployment. AgentJ
with the routing extension allows to run a routing protocol
implementation intended for a real network additionally in
NS2. It is thus possible to verify the correctness, as well as
specific properties of the routing protocol implementation in
the network simulator without rewriting the code.
– Add routing protocols without modification and recompi-
lation of NS2: For every C++ routing protocol implementation
that is added to NS2, parts of the NS2 source code have to
be modified, and NS2 has to be recompiled afterwards. With
AgentJ and the routing protocol extension, no modification
of NS2 and subsequent recompilation is necessary. Multiple
Java routing protocos can thus be tested in parallel without
modification of NS2, once AgentJ is installed.
– Custom trace format for control messages: Control traffic,
that is exchanged between nodes using a Java routing protocol
implementation, is traced in the usual NS2 trace files. As such,
all evaluation scripts that operate on these trace files, can be
used without modifications. If additional tracing of the payload
of packets is desired, this can be accomplished as well with a
small modification of the trace source code in NS2.
– Custom behavior for treating packets on the RTR layer:
For C++ routing protocol implementations, code has to be
provided that treats incoming packets on the routing layer.
For every such incoming packet, it must be decided whether
this packet is a control packet or data packet, whether it
needs to be forwarded or sent up to the application layer etc.
In AgentJ with the routing extension, a default behavior is
already provided, and thus needs not to be supplied by the
routing protocol implementation. If a specific packet treatment
is desired, however, the packet treating code can be easily
extended.

– Unmodified protocol execution: Using other discrete time
simulators does not guarantee that the actual algorithm is
operating correctly because it does not run an exact copy of
the deployed code. Thus, although a simulation may exhibit
desirable properties, the implementation of it may not and
may contain bugs or suffer from performance inefficiencies.
By running the same Java code as in a real deployment
with AgentJ, this not only allows accurate simulations to be
performed, but it also provides an excellent network debugging
environment to analyze any inefficiencies or errors in the code.

VIII. SUMMARY

This paper describes how to run Java routing protocols
within the network simulator NS2. The preexisting tool AgentJ
allows for using Java agents on an NS2 node, but was not capa-
ble of instantiating routing agents. A modification of AgentJ is
presented in this paper, which enables the use of Java routing
protocols in NS2 without modification of the implemented
Java routing protocol, adhering to the Java slogan “write once,
run everywhere”. In addition, once AgentJ has been installed,
NS2 does not need to be recompiled when a new Java routing
protocol implementation is added. All parameters that need to
be changed can be set in configuration files or in environmental
variables, read at execution time. AgentJ, with the proposed
routing extension, keeps full compatibility with NS2, meaning
that it allows for output of all events in the usual NS2 trace
files. Consequently, all evaluation tools used for parsing NS2
trace files can be used without modification.

AgentJ simulations take more time and memory than C++.
However, since commonly simulations are executed by a batch
file and can run unattended, the additional time consumption
of Java protocols in AgentJ is acceptable in many cases.

The routing functionalities have been included in the current
distribution of AgentJ that is available for download [8].

IX. ACKNOWLEDGEMENTS

AgentJ has been development by the Networks and Com-
munication Systems Branch of the IT Division at NRL. On-
going modifications to the core system is being funded by the
Sonoma project, led by J. Macker with associate investigators
B. Adamson, J. Dean and I. Taylor.

REFERENCES

[1] K. Fall and K. Varadhan, “NS-2 web site,” http://www.isi.edu/nsnam/ns.
[2] I. Taylor, B. Adamson, I. Downard, and J. Macker, “AgentJ: Enabling Java

NS-2 simulations for large scale distributed multimedia applications,”
in The 2nd International Conference on Distributed Frameworks for
Multimedia Applications, 2006, pp. 1–7.

[3] S. Kurkowski, T. Camp, and M. Colagrosso, “MANET simulation studies:
the incredibles,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, no. 4,
pp. 50–61, 2005.

[4] “The Protolib Toolkit from the Naval Research Laboratory.” [Online].
Available: http://pf.itd.nrl.navy.mil/

[5] “Java Network Simulator.” [Online]. Available: http://jns.sourceforge.net/
[6] “JiST: Java in Simulation Time Simulator.” [Online]. Available:

http://jist.ece.cornell.edu/index.html
[7] “DRCL J-Sim.” [Online]. Available: http://www.j-sim.org
[8] Naval Research Lab, “AgentJ: Java network simulations in

NS-2. An installation and user manual.” [Online]. Available:
http://cs.itd.nrl.navy.mil/work/agentj/

