
JOLSRv2 – An OLSRv2 implementation in Java

Ulrich Herberg

October 6, 2008

Abstract

This note describes the architecture of our imple-
mentation of OLSRv2 in Java, and some exten-
sions thereto.

1 Introduction

The Optimized Link State Routing Protocol ver-
sion 2 (OLSRv2) [3] is currently being developed
in the MANET working group in the IETF. It
offers many advantages over OLSR [4], includ-
ing support for IPv6, a flexible and extendible
message format and fewer message types. This
memo describes an implementation of OLSRv2 in
Java and several extensions thereto.

1.1 Outline

The remainder of this note is organized as fol-
lows. In section 2 the motivation for writing a
routing protocol in Java is described, as Java may
not be the first language of choice for such low-
level software. Section 3 presents the architec-
ture of the implementation that adheres strictly
to the separation of the specifications of pack-
etbb [2], NHDP [1] and OLSRv2 [3], and also de-
tails each of these three components. In section 4,
the general way of extending JOLSRv2 is speci-
fied and some of the extensions and Java applets
that have been implemented are described. Sec-
tion 6 presents an extension to JOLSRv2 that al-
lows it to run as routing agent on Ns2, using a li-
brary called AgentJ. At last, section 7 describes a
network emulator using JOLSRv2 for testing very
large arbitrary topologies. Section 8 concludes
this note.

2 Motivation

Why would one want to write a routing proto-
col in Java? There are several reasons that make
Java a suitable language for that purpose, at least
in a prototype setting. First and most impor-
tantly, it is platform independent. Distributing
the JOLSRv2 routing protocol is (almost) as sim-
ple as downloading a jar file and launching it
on the Java Virtual Machine. No complicated
configure and make as known from C/C++
implementations. That also means that code can
be handed out to third-parties without impos-
ing the burden of adapting and configuring the
source code. The only limitation is that Java does
not support manipulation of the routing table,
so a small and simple C file using the Java Na-
tive Interface (JNI) is provided with JOLSRv2 for
adding and removing routes. That file is then
all that must be adapted for using JOLSRv2 on
a given operating system.

Another advantage of Java is that it is easy
to program in and that it offers a lot of exist-
ing classes for network operations (e.g. Sock-
ets, DatagramPackets), utility functions such as
ArrayLists, HashSets and IO operations (reading
and writing files). Therefore, it eases experiments
with (prototype) extensions to JOLSRv2, some of
which will be presented in section 4.

3 Architecture Overview

According to the separation of OLSRv2 into [2],
[1], and [3], JOLSRv2 has been implemented as
entirely separated Java projects, related as in fig-
ure 1.

The packetbb module is a complete, indepen-
dent library implementation of [2], with an easy-
to-use JavaDoc documented API. This is detailed
in section 3.1. The NHDP implementation relies
on the existence of the packetbb library and uses

1

Figure 1: Architecture of JOLSRv2

the exposed API hereof. It contains all NHDP
entities such as node, interfaces, sender and re-
ceiver threads, and is detailed in section 3.2.
The OLSRv2 module, again, is dependent on the
NHDP module and the packetbb library. It uses
the existing sets from NHDP, inherits from the
NHDP interface and node, and adds all addi-
tional functionalities of OLSRv2 (such as sending
and processing of TC messages), without rewrit-
ing or changing existing NHDP code. A more
detailed description of OLSRv2 can be found in
section 3.3.

3.1 Packetbb

The packetbb library adheres to [2], with all
entities from the specification being realized as
distinct Java classes (Message, Packet, TlvBlock,
AddressBlock, Tlv). All classes and their class
members have been documented using JavaDoc,
which allows an easy integration into existing
projects. The example in figure 2 illustrates how
packetbb can be used.

Note that the information within a Packet ob-
ject or Message object is not stored in a byte ar-
ray but in class member variables of the Java
class. Thus, before sending a packet, the method
packet.getBytes() has to be called which gener-
ates the byte array for sending. This enables easy
manipulation of a packet or message, at the ex-
pense of some extra time required for generating
the byte array when sending the message.

The packetbb implementation also allows for
parsing only parts of a packet, namely the packet
header, or packet header plus message headers.
This reduces the time spent on parsing messages
that are only forwarded (e.g. incoming TC mes-
sages).

Message h e l l o = new Message () ;
h e l l o . setType (HELLO) ;
h e l l o . setHopLimit (1) ;

TlvBlock msgTlvBlock =
new TlvBlock (MESSAGE) ;

Tlv va l id =
new Tlv (MSG, VALIDITY TIME) ;

va l id . setValue (TimeTlv . encode (6 ,C)) ;
msgTlvBlock . add (va l id) ;

h e l l o . setMsgTlvBlock (msgTlvBlock) ;
byte [] bytes = h e l l o . getBytes () ;

Figure 2: Example: Usage of packetbb

3.2 NHDP

The NHDP implementation mainly consists of
the two classes NHDPNode and NHDPInterface,
and of classes for all sets specified in [1] as il-
lustrated in figure 3. The classes representing
the sets and their tuples are all derived from
a class called AbstractSet and AbstractTuple re-
spectively. Again, duplicated code for accessing
the sets is avoided by using Java inheritance.

Parameters for the node and each of its inter-
faces can be set from a config file that is read
in at startup. For example, the names of the
MANET interfaces (e.g. wlan0) and their IP ad-
dresses can be specified. For changing param-
eters in a running instance of NHDP (and OL-
SRv2 respectively), a Remote Method Invocation
(RMI) stub has been added. This allows for dis-
play of all sets, change of any parameter (such as
HELLO INTERVAL), addition or removal of inter-
faces and IP addresses remotely. A client access-
ing this information is described in section 5.1.

3.3 OLSRv2

The OLSRv2 module is a separate module which
uses the NHDP module and the packetbb li-
brary. Depicted in figure 3, OLSRv2 has two main
classes (OLSRv2Node and OLSRv2Interface) that
are each inherited from NHDP. Thus, almost no
duplicate code needed to be written such as for
sending and receiving messages and for gener-
ating or processing HELLO messages. The OL-
SRv2 module basically consists of all additional

2

Figure 3: Simplified UML diagram of the most
important classes of JOLSRv2

sets that are specified in [3], all new variables and
constants (such as TC INTERVAL), and the gener-
ation and processing of TC messages.

4 Extensions

Similar to the way that OLSRv2Node inherits
from NHDPNode and OLSRv2Interface inherits
from NHDPInterface, extensions can be eas-
ily integrated into both OLSRv2 and NHDP.
Any method that needs to be changed can be
overwritten, for example generateHello(). As
one possible extension, we have implemented
a signature mechanism for packetbb messages
that allows messages to be signed and verified
on sending and reception respectively. This is
simply done by inheriting from OLSRv2Interface
and overwriting processHelloMsg() and gener-
ateHello(). In order to run this new extension,
the node and interface class must be defined
in the config file that is read on start. For
our signature class for example, the config
file would define the parameter nodeclass
= net.jolsrv2.SignedOLSRv2Node and
in the interface section interfaceclass =
net.jolsrv2.SignedOLSRv2Interface
and all necessary parameters such as public
and private key. The main() function of the Java
application then invokes the given node and in-
terface class instead of the default OLSRv2Node
and OLSRv2Interface classes. For a detailed
description of the signature extension, including
simulation results, see [6].

5 Java Applets

Another benefit of using Java, is that it allows for
easy web integration by writing Java applets us-
ing the packetbb library and/or the NHDP/OL-
SRv2 modules. Some of these applets are avail-
able for the OLSRv2 Interop workshop 08 and
will be described in the following sections. All
applets can be found on my webpage [5].

5.1 GUI Client

As outlined in section 3.2, our implementation
of NHDP and OLSRv2 hosts a Java RMI server.
This allows for accessing methods over a stub.
Objects that have to be transferred, simply have
to implement the Serializable interface and are
(de-)serialized automatically by Java. The Java
applet can then connect over TCP/IP to the RMI
server and call all methods that are defined in the
stub. Written in Java Swing/AWT, it regularly ac-
quires all sets from OLSRv2/NHDP, and displays
these using their toString() methods. In addition,
all parameters can be changed and new interfaces
and IP addresses can be added or removed. We
find this to be a useful tool for experimental runs
of a given test setup – for a deployment, this fea-
ture needs to be removed or authenticated for se-
curity reasons.

This applet also allows for displaying the lo-
cal topology from the point of view of the node
to which the applet is connected as depicted
in figure 4. It uses a library called Jung2 [9],
that enables for drawing graphs and layouting
them ”optimally” if not geographically correct in
space.

5.2 Parser and Packet Creator

The packetbb parser and packetbb creator applet
are available on the OLSRv2 Interop08 website1.
The two Swing/AWT applets use the packetbb
module for alllowing easy online interoperabil-
ity tests of different packetbb implementations.
The parser applet has an input field for a string
of hexadecimals numbers that represent a (hope-
fully) valid packetbb packet. Pressing on a but-
ton parses the string and creates a Packet object –
or displays an error if the packet is not valid. A

14th OLSR Interop / Workshop, Ottawa, CA, 2008,
http://interop08.thomasclausen.org

3

Figure 4: Local view of the topology in the GUI
applet

human-readable output of the packet is then dis-
played. The objective of this applet was to pro-
vide a ”head start” on assuring interoperability
of OLSRv2 prior to the Interop’08.

The packet creator applet allows for creating
packetbb packets by a graphical interface. After
creating a packet, the hexadecimal dump as well
as a human-readable output is shown.

5.3 Ns2 Trace File Visualizer

This applet, depicted in figure 5, allows for im-
porting Ns2 trace files and to display the node
topology over time (similar to ”nam” or ”iN-
Spect” [7]). Contrary to the latter, no config file
has to be written, all parameters – including field
size and simulation time – are extracted from the
trace file. Again, the applet does not need any in-
stallation but runs in a web browser with a JVM
plugin. If JOLSRv2 is used as a routing protocol,
the applet not only displays the positions of the
nodes over time, but also draws edges between
nodes that are symmetric neighbors or that are
contained in another node’s topology set. For this
to work, JOLSRv2 outputs the neighbor set and
the topology set in the Ns2 trace file whenever ei-
ther of these changed. An example for such a line
in the trace file would be:
L 61.0 2 OLSRV2 N 5;6 T 6;7
meaning that OLSRv2 logs (’L’) that at time

61.0 seconds, node 2 has the symmetric neigh-
bors 5 and 6, and the destination node 7 can be
reached over node 6 in the topology set.

The applet allows for picking one particular
node and displaying its radio range as a grey

Figure 5: Ns2 trace file visualizer

circle around the node, its symmetric one hop
neighbors with blue edges and its topology set
with green edges. Thus, the topology of a partic-
ular node at a particular time can be easily vali-
dated.

6 Ns2 Connection Using AgentJ

One challenge for a routing protocol written in
Java is to combine it with Ns2. C or C++ proto-
col implementations can be used as Ns2 agents
in a quite straightforward way by using the Pro-
tean library from NRL [8]. This library adds
an extra transparent layer between the low level
API of the operating system or the Ns2 simula-
tor, respectively, and the higher application lev-
els. Thus, with a single compiler flag change dur-
ing compilation, the routing protocol can be used
either on a real operating system or Ns2.

Running a Java routing protocol in a similar
way on top of Ns2 is more challenging. NRL
is developing a library for using Java agents in
Ns2 called AgentJ [10]. While still under devel-
opment, this software allows to run Java pro-
gram without any modification (“as is“) on Ns2.
AgentJ uses Java Native Interface (JNI) invoca-
tions to launch the Java Virtual Machine and
keeps pointers between the Ns2 node in C++ and
the Java agent (see figure 6). It uses bytecode
rewriting of many java.io and java.net classes for

4

Figure 6: AgentJ integration in Ns2

enabling agents running without change on both
real systems as well as Ns2.

However, for running JOLSRv2 on top of
AgentJ, modifications were required. First, nodes
on Ns2 normally use integer values as node ID.
But for testing the effectiveness of packetbb for
address compression, our goal was to use IPv6.
Thus, when creating the agent, a parameter for
the IPv6 address is transmitted and a mapping
between this IP address and the node ID is used.

Additionally, a new Java Classloader has been
written that allows for using static variables on
each node. As all agents are executed in the same
JVM, static variables are accessible in the con-
text of all nodes. Values in such a static variable
would thus be the same for all nodes. The new
Classloader loads all classes from the application
and only hands over requests for Sun classes (e.g.
java.* and javax.*) to the system Classloader.

At last AgentJ, as is, only allows for Java appli-
cation agents to run, not for routing agents. So
mainly the method recv() had to be added for al-
lowing messages to be received and sent. When-
ever a node needs to send unicast packets to some
destination, recv() accesses the Java agent to get
the nexthop from the RoutingSet of JOLSRv2. A
more detailed description of AgentJ can be found
in [10].

7 Emulator

While the Ns2 extension to JOLSRv2, described in
section 6, gives the opportunity to study behav-
ior of JOLSRv2 running on mobile nodes, some
properties are difficult to test in a discrete event
simulator such as Ns2. In particular, Ns2 does not
scale up to larger number of nodes, and most sim-
ulations will only consider some 100 nodes. For
testing an implementation of OLSRv2 concerning
efficient in-node algorithms, these small test sets

may not be sufficient. In addition, it is difficult
(or impossible) to make a statement about timing
issues such as the necessary time for RoutingSet
calculation, as in Ns2 the discrete time does not
advance during this kind of calculation.

For these reasons, an OLSRv2 emulator has
been built. It allows to emulate a large topol-
ogy of nodes. The basic idea is illustrated in
figure 7. Note that the emulator runs on real
machines, i.e. the addresses depicted in the fig-
ure have to be bound to a network interface in
the operating system. In the figure you can see
one node with the address abcd::1. This is the
node running an OLSRv2 implementation to be
tested. On the right side, several nodes are shown
with IP addresses from abcd::2 to abcd::5 in
this example. These nodes shall represent the 1-
hop neighbors of abcd::1. However, these four
nodes are not running on four different machines,
but simply on a single machine and a single in-
terface (e.g. eth0) but with four different IP ad-
dresses. The emulator running on this machine
creates HELLO messages on these four IP ad-
dresses and thus emulates four direct neighbors
of abcd::1. Note that the HELLO messages al-
ready include abcd::1 in the list of neighbors,
so that the link is symmetric right from the first
HELLO message. In addition, forwarded TC
messages of ”virtual“ nodes are created. These
”virtual“ nodes represent nodes that are at least
two hops away from abcd::1, but are not bound
to an IP address on the emulator machine. The
four 1-hop neighbors simply create TC messages
and pretend that these originate from nodes fur-
ther away. For example, such a TC message
might have a hop count of 4 (i.e. four hops away
from abcd::1), and any message originator ad-
dress different from the four direct neighbors.

The emulator can thus pretend to represent
arbitrary topologies to the node that is to be
tested. An applet has been implemented (us-
ing the graph library Jung2 [9]) that allows for
creating topologies, exporting these as XML files
and reimport these XML files into the emulator
to specify the ”emulated topology”. In the ap-
plet, the user can simply draw nodes by click-
ing on an area and creating edges between two
nodes by holding the mouse botton. Addition-
ally, random graphs using the Eppstein Power
Law or Erdos-Renyi can be created in the applet.
As these graphs might be separated into several

5

Figure 7: Emulator

connected components, the applet connects these
components randomly. Another feature is to im-
port Ns2 tcl files representing a static scenario
(i.e. not including any node movements). After
having created or imported the graph, a spanning
tree with the node abcd::1 being the root is cal-
culated. This tree is then exported as XML file.

Topologies created with this applet can easily
contain several tens of thousands of nodes. This
allows for large-scale efficiency studying of OL-
SRv2 in-node calculations that might not appear
in a small test-bed setting and reveal elements
(such as route calculation time) that may not be
possible using a discrete event simulator.

8 Conclusion

In this paper, an implementation of the rout-
ing protocol OLSRv2 in Java has been pre-
sented. Java offers a platform-independent, well-
documentable way of implementing software
and offers many classes for accessing network
functionality and other auxiliary tools. The im-
plementation is structured in three separated
modules for packetbb, NHDP and OLSRv2. Us-
ing inheritance, extensions to OLSRv2 (such as
security extensions) can easily be added without
rewriting or changing existing code. Another ad-
vantage of Java is the ability to write applets that
can be called in a web browser. Some such ap-
plets presented in this paper allow for online in-
teroperability tests. Using a library called AgentJ,
JOLSRv2 can also be used as routing agent in
Ns2. This is helpful for researchers interested in
using JOLSRv2 for simulating MANETs. Some
necessary changes in AgentJ for using it as rout-
ing agent (and not only application agent) have
been described. At last, an emulator based on
JOLSRv2 has been presented that allows for creat-
ing huge arbitrary topologies by sending HELLO

and TC messages from a single machine but pre-
tending to origin from nodes several hops away.

References

[1] T. Clausen, C. Dearlove, and J. Dean.
MANET neighborbood discovery protocol
(NHDP). Internet Draft, work in progress,
draft-ietf-manet-nhdp-07.txt, July 2008.

[2] T. Clausen, C. Dearlove, J. Dean, and C. Ad-
jih. Generalized MANET packet/message
format. Internet Draft, work in progress,
draft-ietf-manet-packetbb-16.txt, September
2008.

[3] T. Clausen, C. Dearlove, and P. Jacquet. The
optimized link-state routing protocol ver-
sion 2. Internet Draft, work in progress,
draft-ietf-manet-olsrv2-07.txt, July 2008.

[4] T. Clausen and P. Jacquet. Optimized link
state routing protocol (OLSR), October 2003.
RFC 3626.

[5] U. Herberg. JOLSRv2 applets webpage.
http://www.lix.polytechnique.fr/
˜herberg/research/jolsrv2/applets/.

[6] U. Herberg and J. Milan. Cryptographi-
cal signatures for use in packetbb. Inter-
net Draft, work in progress, draft-herberg-
packetbb-signatures-00.txt, November 2008.

[7] S. Kurkowski, T. Camp, N. Mushell, and
M. Colagrosso. A visualization and analysis
tool for ns-2 wireless simulations: iNSpect.
In Proceedings of the 13th IEEE International
Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Sys-
tems (MASCOTS), pages 503–506, 2005.

[8] Naval Research Laboratory. Protean
protocol prototyping library (protolib).
http://cs.itd.nrl.navy.mil/work/protolib.

[9] J. O’Madadhain, D. Fisher, and T. Nelson.
JUNG – Java Universal Network/Graph
Framework. http://jung.sourceforge.net.

[10] I. Taylor, B. Adamson, I. Downard, and
J. Macker. AgentJ: Enabling Java Ns-2 sim-
ulations for large scale distributed multime-
dia applications, 2006.

6

	Introduction
	Outline

	Motivation
	Architecture Overview
	Packetbb
	NHDP
	OLSRv2

	Extensions
	Java Applets
	GUI Client
	Parser and Packet Creator
	Ns2 Trace File Visualizer

	Ns2 Connection Using AgentJ
	Emulator
	Conclusion

