
On the Practicality of Detecting Anomalies with
Encrypted Traffic in AMI

Robin Berthier∗, David I. Urbina†, Alvaro A. Cárdenas†, Michael Guerrero†, Ulrich Herberg‡, Jorjeta G. Jetcheva‡,
Daisuke Mashima‡, Jun Ho Huh§, and Rakesh B. Bobba∗,

∗University of Illinois at Urbana-Champaign, †University of Texas at Dallas,
‡Fujitsu Laboratories of America, and §Honeywell Labs

{rgb,rbobba}@illinois.edu, {david.urbina,alvaro.cardenas,michael.guerrero}@utdallas.edu
{uherberg,jjetcheva,dmashima}@us.fujitsu.com, junho.huh@honeywell.com

Abstract—Encryption is a key ingredient in the preservation of
the confidentiality of network communications but can also be at
odds with the mission of Intrusion Detection Systems (IDSes) to
monitor traffic. This affects Advanced Metering Infrastructures
(AMIs) too where the scale of the network and the sensitivity
of communication make deploying IDSes along with encryption
solutions mandatory. In this paper, we study four different
approaches for reconciling the twin goals of confidentiality and
monitoring by investigating their practical use on a set of
real-world packet-level traces collected at an operational AMI
network.

I. INTRODUCTION

The use of Intrusion Detection Systems (IDSes) in Smart
Grid deployments is becoming a fundamental approach in
securing smart grid networks, especially as the scale and
scope of such networks increases, encompassing ever more
critical functionality, and as they complete their migration to
standardized communication stacks. Similarly, increased use
of encryption is expected to both prevent eavesdropping and
better protect sensitive and private data, such as fine-grained
meter readings. A side-effect of encrypting communication is
the loss of visibility into network traffic, which prevents IDSes
from performing packet-level inspection analysis.

While an IDS can be given encryption keys to decrypt
and parse messages, in practice there are several reasons
for having a hierarchical analysis where one IDS monitors
encrypted traffic and another one has the ability to decrypt
special messages. Having an IDS capable of analyzing en-
crypted communications is particularly important to prevent
information leakages, as large companies keep increasing the
number of analysts looking at intrusion alarms, and smaller
companies outsource the analysis of logs to outside companies.

A variety of techniques have been discussed to enable
IDSes to monitor encrypted traffic in AMI networks [5],
including sharing keys with IDS sensors, leveraging partial
encryption, or applying traffic analysis techniques. In this
paper, we investigate how some of those approaches could
work in practice by applying them experimentally on real
traffic captured at a large operational utility AMI network.

In particular, we study four different approaches:
• Monitoring the periodicity of meter communications,
• Detecting rogue devices through passive fingerprinting,
• Tracking unknown flows by baselining the network con-

nectivity graph, and
• Identifying traffic patterns and outliers through unsuper-

vised clustering.
We discuss the effectiveness of each of these approaches

in detecting suspicious activity in the context of the AMI
traces that we were able to collect. The main contributions of

this work are to offer a detailed view of the internal network
communications found on a large AMI and to provide insights
on the challenges and possible solutions to identify intrusions
despite the deployment of encryption.

II. RELATED WORK

Analysis of encrypted traffic has been an active research
area for the past two decades, and can be classified into two
broad categories: 1) traffic classification techniques that use
machine learning to classify flows per application [11], [8],
and 2) packet analysis techniques that attempt to identify
protocol operations through packet-level inspection [9].

Our work falls in the second category, since AMI com-
munication traffic uses a single application-level protocol,
namely ANSI C12.22. The work closest to ours is [7], where
the authors proposed an IDS approach that does not need
to inspect packet payloads. They leveraged the periodicity
of process control system communication to identify outliers
that could potentially represent malicious behavior. They use
packet sizes, packet directions, and the relative time position
of packets within a time series to label similar packets. The
main limitations of this approach is the challenge of correctly
tuning or training the parameters related to the polling cycles
in order to achieve a good detection accuracy. A difference
with our approach is our focus on AMI traffic and the need to
identify different C12.22 sessions within a single TCP session.

Ali and Al-Shaer [1] demonstrate that AMI behavior can be
modeled using ‘event logs’ collected at access points. Specifi-
cation invariants, generated from AMI device configurations,
are used to verify the AMI behavior models near the access
points where the logs are collected. Our approach looks at the
encrypted C12.22 traffic to detect anomalous behavior, which
means there is more flexibility for placing IDS sensors in
different physical locations, and enabling us to detect attacks
that are located within the Neighborhood Area Network (i.e.,
not reaching the access points).

III. DATA COLLECTION

We partnered with a large U.S. elecric utility to collect
network traffic at the head-end of a 30,000-meter operational
AMI network, over several time periods. An AMI deployment
usually comprises a Wide Area Network (WAN) that connects
collection engines at the head-end with access points in the
field, and Neighborhood Area Networks (NANs), each of
which is connected to one or more access points. A NAN
is intended to carry smart meter communications. In our
case, the WAN uses TCP/IP and consists of about 90 distinct
access points. Each NAN uses a wireless mesh network that
is not IP based but uses proprietary protocols. All datasets

Submitted for publication. Author copy - do not redistribute. 



were recorded in PCAP format on the TCP/IP portion of the
network.

The AMI uses ANSI C12.22 [13] as the application-layer
communication protocol. Only packets on the TCP port used
by C12.22 (port 1153) were recorded. The PCAP capture files
were dissected using both Wireshark and an IDS sensor called
Amilyzer [6]. For each trace, TCP/IP and C12.22 [13] protocol
information were extracted. The C12.22 payloads consist of
an Association Control Service Element (ACSE) header and
one or more Extended Protocol Specifications for Electric
Metering (EPSEM) elements. ASCE headers contain control
information about the association between communicating
entities, such as caller and called identifiers (calling/called
AP-titles). EPSEM elements have either a service request or
response and hold C12.19 data values. In most of the packets
recorded at the utility facility, the EPSEM elements were
encrypted but the TCP/IP headers and the ACSE header were
sent in the clear. Table I summarizes the main features of the
two traces collected at the utility site.

Date recorded Duration #Packets #IPs #ApTitles
April 23, 2014 24 hours 1,009,982 86 25,645
May 5, 2014 24 hours 1,011,988 87 28,471

Table I
DATASETS COLLECTED IN 30,000-METER AMI NETWORK

IV. EXPERIMENTAL DATA ANALYSIS

A. Taxonomy of AMI Traffic
Our goal in this section is to understand what types of

network traffic are present in real-world AMI network traces.
Figure 1 and Figure 2 depict packets flowing between the
meters and the collection engine in our two traces. The
sampling resolution is one minute, i.e., the Y-axis counts the
number of packets per minute (1,440 minutes per day).

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

2000

Minutes

Pa
ck
et
s

Student Version of MATLAB

Figure 1. Number of packets per minute collected on April 23 over a 24-hour
period. Overall traffic is shown in blue and TCP retransmissions are shown
in red.

The red (lower) curve in both figures represents TCP
retransmissions (1.6% of the total number of packets). Those
retransmissions indicate possible losses and delays on the

0 200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

900

Minutes

Pa
ck
et
s

Student Version of MATLAB

Figure 2. Number of packets per minute collected on May 5 over 24 hours
on an AMI of 30,000 meters. Overall traffic is shown in blue and TCP
retransmissions are shown in red.

communication links used by the WAN. They are useful
information to be monitored by an IDS in order to detect
irregularities. For instance, a sudden loss of quality of service
could be due to a denial-of-service attack.

We then identified three categories of traffic in both traces:
1) a periodic and continuous background traffic of keep-alive
requests, 2) a periodic set of AMI requests/responses, and 3)
aperiodic traffic.

Packets in the first category are unencrypted and consist
of identify requests sent by cell relays every 60 seconds. They
have an empty called-Ap-title indicating that they are broadcast
messages, but they receive an acknowledgment packet from
the collection engine about 0.2 seconds after being sent.

Packets in the second category are encrypted and larger
in size (254 bytes compared to 92 bytes long for the keep-
alive packets). They have a period of 240 minutes and are
initiated by the collection engine. The period of 240 minutes
was identified by applying an auto-correlation technique, as
shown on Figure 3. In the figure, the interval between spikes
can be considered to be the period. Meters being contacted by
those requests respond after a random delay over a period of
135 minutes that starts 10 minutes after the collection engine
sent the requests. This traffic, which consists of periodic
meter readings, shows strong regularity on the second trace
(Figure 2) but only starts after 367 minutes in the first trace
(Figure 1). After checking with the utility, this initial gap of
6 hours with no periodic traffic was due to a system outage.
Knowledge of the expected periodicity of the traffic enables
an IDS to report such irregularities.

The third category consists of three types of unencrypted
requests for which we did not identify a period. They include
registration requests, write requests, and response errors to
some encrypted requests. They were initiated by 114 devices in
the first trace, and 159 devices in the second trace, which rep-
resents less than 0.5% of the meter population. We compared
the ApTitles and found that only 14 were common across the
two traces, indicating that this traffic is specific in time and in
scope.

We analyzed further the registration requests and responses
and found that there was about 1 registration response every 10



minutes, and that most registrations happen within 20 minutes
of each other. This indicates that the network as a whole
is relatively stable, and that there are occasional disconnec-
tions, typically in small clusters where one poor quality or
disconnected link led to the disconnection of multiple meters
and their change of affiliation to a neighboring access point’s
network. We believe that tracking the patterns of registration
responses in an AMI network, can be helpful in identifying
anomalous behavior, including attacks against the AMI mesh
routing protocol, which lead to an increase in registration
traffic.

−1000 −500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minutes

Student Version of MATLAB

Figure 3. Auto-correlation applied to the second 24-hour trace to find the
period of 240 minutes between encrypted requests initiated by the collection
engine.

B. AMI Device Fingerprinting
While encryption hides payload content, it is still possible

to extract useful information from the unencrypted packet
headers. The idea in this section is to check if the network
stack of AMI devices and OS/firmware running on them could
be fingerprinted to be validated despite the encryption. This
would enable us to add device fingerprint signatures to the IDS
in order to flag unknown or unauthorized devices appearing
on the network.

In order to explore this direction, we ran a passive fin-
gerprinting tool called P0f (version 3.06b) [14] on both
traces. Based on the contents of captured packets, P0f extracts
fingerprints consisting of MTU signature and TCP signature
[14], which vary across protocol stack implementations. We
note that, in traces collected at the head-end, only device
information about the collection engine and the access points is
visible. Monitoring the characteristics of smart meter devices
would require that packets be recorded within NANs or that
a fingerprinting mechanism based on C12.22 payloads, which
are visible to the collection engine even when access points
are mediating the communication, is implemented.

P0f identified three distinct fingerprints in both of our traces,
besides ones attributed to the collection engine. Those three
fingerprints were not found in P0f’s signature database and are
associated with the IP addresses of access points. The exact
fingerprints being sensitive information, we label them FP1,
FP2, and FP3. FP1 indicates larger initial TTL and window

size, as well as more TCP options set. The only difference
between FP2 and FP3 is found in initial TTL. We observed
that all access points share FP1 when they are initiating TCP
connections, while FP2 and FP3 divide access points into
two groups when they accept incoming TCP connections. This
result indicates that the pairs of fingerprints (FP1, FP2) and
(FP1, FP3) can be used to identify two families of devices.
We confirmed with the utility partner that thoses devices are
different models. Another important result is the consistency
of those pairs of fingerprints across the two traces, indicating
that an attacker intruding on the network with a personal
computer, impersonating meters [10], or access points running
malicious/unauthorized firmware could be flagged.

C. Connectivity Graph

The concept of identifying intrusions using a network
connectivity graph refers to learning the relationships among
end points in order to flag when a new end point or a new
link appears in the graph. Access to two 24-hour windows of
traffic, 10 days apart from each other, can help us understand
if such a technique could be promising.

The addresses of end points in an AMI can be extracted at
the physical layer (MAC addresses), IP layer (IP addresses)
and at the application layer (ApTitles). An IDS sensor can
extract those addresses and keep a database updated to identify
when a new end point initiates communication and when a new
pair of end points is exchanging traffic.

Table II contains the unique number of IP addresses and
ApTitles found in each dataset. Those results reveal important
changes from one collection date to the next. In particular, we
observe greater variations in the source and destination roles of
end points compared to their unique count. This indicates that
new nodes appeared but a larger number of nodes that were
used solely as sources became destinations, and vice-versa.

End points Initial set Added Removed
IP addresses 86 8 9
Source IP 69 21 9
Dest. IP 57 1 2
ApTitles 25,645 9,096 6,270
Calling ApTitles 21,768 11,843 5,951
Called ApTitles 8,768 946 7,328

Table II
ADDRESS INFORMATION COLLECTED AT LAYERS 3 AND 7 OVER A

24-HOUR PERIOD, AND DIFFERENCES WITH A 24-HOUR TRACE
COLLECTED 10 DAYS LATER

Table III contains similar results but for relationships among
end points, where each connection is identified by a source and
destination IP address pair. We observe the consequence of
role reversal with a large number of new relationships added
and relationships removed between the initial and the most
recent data set collected.

Unique connections Initial set Added Removed
(Src IP, Dst IP) pairs 124 22 11
ApTitles 27,777 15,152 13,449

Table III
NUMBER OF UNIQUE CONNECTIONS AMONG END POINTS COLLECTED AT

LAYERS 3 AND 7 OVER A 24-HOUR PERIOD, AND DIFFERENCES WITH A
24-HOUR TRACE COLLECTED 10 DAYS LATER



The results from the connectivity graph analysis indicate
that the AMI under consideration was too dynamic at the time
of our data collection for this approach to be effective. We
got confirmation from the utility partner that a large number
of meters were added and reassigned to specific cell relays
between the two days during which we collected data. Once
the population of end points and the communication patterns
are stable, the technique of monitoring the connectivity graph
can be highly effective to detect rogue end points, spoofing
attacks, and anomalous changes in communication patterns.

D. Unsupervised Learning
Traffic analysis of encrypted communications has tradition-

ally leveraged two pieces of information that are not concealed
by encryption: social behavior of a node (who is talking to
whom), and network traffic statistics such as packet sizes,
timings, and header information from the various traffic flows.

Our goal in this section is to apply unsupervised learning
algorithms to encrypted AMI network traffic in order to
understand whether or not traditional feature vectors used
for encrypted traffic classification can reveal an underlying
structure of AMI network flows. In particular, since we know
that C12.22 packets contain either requests or responses from
a limited number of commands, our initial goal is to see if
unsupervised classification algorithms can identify clusters of
encrypted network flows of packets with potentially similar
commands being sent or received and also can detect an
outlier, which may be an indication of attacks, and regular
AMI communications, which would be represented as clusters.

One of the main differences between the challenges we
encountered and prior work on encrypted traffic classifica-
tion [12], [3], [4], [2] is that in that prior research, the authors
extract feature vectors from TCP flows. Because TCP is a
connection-based protocol, this allows researchers the ability
to collect aggregate statistics of several packets (multiple
packet sizes and timing information corresponding to one ses-
sion) going back and forth between sender and receiver. While
C12.22 supports connections, most of the communication (in
fact, all of the flows in our trace) consist of only one or two
packets: either a notification update such as a meter sending
its table to the server at periodic intervals, or a request and a
reply.

Because all communications in our C12.22 trace are either
a single packet or a request-response pair, we can only
create network flows of one or two packets. We extracted
C12.22 flows by focusing on the following header param-
eters: called-AP-title, called-AP-invocation-id,
calling-AP-title, and calling-AP-invocation-id.
Calling-AP-title and called-AP-title are the

device identifiers of the source and destination of the packet,
respectively. Calling-AP-invocation-id is a sequence
number used to keep track of sessions and to eliminate
duplicate packets. Called-AP-invocation-id is empty
for the first packet of a session, and matches the previous
calling-AP-invocation-id for response packets.

C12.22 headers also contain a Request Control Flag (RCF)
that according to the standard specifies the following values:
0x0 to denote that the sender wants a reply to this packet,
0x1 to denote that the sender wants a reply to this packet
only under error conditions, and 0x2 to instruct the receiver
to not respond to this packet. We also observed a flag value
of 0x3 that is manufacturer-specific. This flag helped us in
identifying flows (when we see 0x2 we know we do not have
to look for a matching calling-AP-invocation-id). We
also confirmed that all replies (the second packets of our flows)
have the flag RCF 0x2, thereby confirming that our matching

flows identifies a maximum of only two packets per flow. In the
traces analyzed, we also found an unknown flag (not defined
by the standard).

Among all unsolicited messages (first packets in a flow),
the distribution of the RCF flag is shown in Table IV.

Flag Percentage
Always Respond, 0x0 44%
Respond on Exception, 0x1 18%
Never Respond, 0x2 19%
Manufacturer Flag, 0x3 19%

Table IV
DISTRIBUTION OF RCF FLAG AMONG ALL UNSOLICITED MESSAGES

(FIRST MESSAGE OF A SESSION)

Identifying single-packet flows (unsolicited-messages) and
two-packet flows with request-reply pairs enabled us to start
creating flow-based feature vectors. Those vectors consists of
(1) the size (in bytes) of the payload in the first packet of the
flow, (2) the size (in bytes) of the payload in the second packet
of the flow (zero if there is no second packet), (3) the time
(in ms) between packets (zero if there is no second packet),
and (4) the direction of the flow: 1 if the flow is originated
from the collection engine, and 0 if the flow originated from
a device in the field.

Figure 4 shows the multidimensional space of the feature
vectors. A first observation is that there is a clear outlier:
one of the response messages has a payload of 1,044 bytes,
which makes it much larger than the rest. Looking at the
packet that generated this outlier we found that it is a packet
composed of three C12.22 layers. Similarly we found that the
largest unsolicited packet (a request of 2,089 bytes) consisted
of four C12.22 layers concatenated together. Upon further
inspection, we found 82 packets in the first trace with multiple
C12.22 payloads; furthermore those extra layers have the same
source and destination ID (Called and Calling AP titles).
They represent 0.0147% of all packets and are due to packet
aggregation performed by the access points.

Other observations from Figure 4 include the following: (1)
unsolicited messages have a wide range of packet payload
lengths, while replies are usually small and tend to be less
than 200 bytes; (2) unsolicited messages that receive a reply
have small payloads (less than 900 bytes) while unsolicited
messages do not ask for replies can be up to 2000 bytes; (3)
there is a wide range of packet sizes for unsolicited messages
originating from the AMI, while packet sizes of unsolicited
messages starting at the server side are small (up to 500 bytes).
These traffic patterns can be used to develop anomaly detection
rules such as: (1) a reply larger than 200 bytes is anomalous,
(2) if an unsolicited message is larger than 800 bytes, then it
will not receive a reply (if it does, then this is an anomaly),
and (3) an unsolicited message from the server to the AMI
larger than 500 bytes is an anomaly.

We then applied unsupervised learning algorithms on the
feature vectors to identify patterns in the dataset. In order to
make sure that one dimension is not dominating the others,
we normalized each dimension using the following formula:
x′ = (x− xmin)/(xmax − xmin).

We used the K-means algorithm to identify clusters of
packets. While there are several automatic suggestions rec-
ommending values for K there is no clear consensus on the
selection of K, and the best approaches rely on attempting
multiple cluster numbers and evaluating them with exploratory
data analysis. We experimented with small values of K from



Figure 4. Feature vector space representing each feature against the payload size in bytes and the time difference in seconds.

2 clusters to 6 in order to identify a small number of clusters
from which we could do a manual analysis of the clusters, and
in particular of the packets belonging to each cluster. We focus
on 6 clusters in this paper, with cluster labels of 0 through 5.

From our clusters, we were able to identify that cluster 5
has 98% of the identify requests (from a total of 75,563),
which are unencrypted and recognizable. Although, we could
not extend our analysis to identify other specific commands
sent and received due to a lack of corresponding plaintext
packets, these results support our hypothesis that clusters
of encrypted C12.22 communications can identify specific
commands exchanged in the network. Our goal is to extend
this work to identify all commands being exchanged in the
network (e.g., with the help of a testbed) and then instruct
an IDS to allow communications within traditional clusters
(commands) and flag as suspicious communication flows that
do not fall into any traditional commands. The other side of
this interpretation is that encrypted communications can leak
the type of commands being shared in a network, and this
is something a designer should take into account when doing
vulnerability assessments.

Clusters can also be used to identify faults or miscon-
figurations. Looking at clusters 2 and 4, we found several
packets with missing elements such as calling invocation IDs.
Overall, clusters 2 and 4 contain 100% (50.1%, and 49.9%
respectively) of malformed packets (from a total of 174,607).
This clustering of malformed packets likely occurs because
of different types of errors. As part of the next steps to
implement this approach in an IDS, we plan to add root
cause information to those clusters in order to inform operators
about their criticality. Finally, we also identified clusters 3 and
5 as being composed by packets with responses, while the
other clusters have an overwhelming percentage of unsolicited
messages without replies.

As a final part of our analysis, we now visualize the clusters.
While the feature vector lies in a four dimensional space,
we can make a projection that maximizes the variance of the
feature space. This projection of a 4-D vector to a 2-D vector
can be achieved with Principal Component Analysis (PCA).
Table V shows that keeping only the two most significant
components retains 98% of the variance of the data.

Figure 5 depicts the 2-Dimensional space resulting after
applying PCA with 2 components to the feature vectors;

# Comp. Ret. Var. # Comp. Ret. Var.
1 78% 2 98%
3 99% 4 100%

Table V
COMPONENTS VS. RETAINED VARIANCE

each cluster is assigned a different color. While in our initial
analysis of the clusters we did not identify this clear separation
of the network flows, upon looking at this PCA projection we
noticed that the cluster on the right is cluster 0, and upon
further inspection we noticed that this cluster is composed
of over 90% of unsolicited messages (unidirectional flows)
sent to the meters; therefore, the connections in cluster 0
stand out from the ones in other clusters by having a 1 in
the flow dimension, and 0 for both, the timing and the size
of the reply. This behavior is a clear discriminant feature of
the network flows as only 7% of connections are initiated
by the server (93% of connections are initiated by the smart
meters); furthermore, only 9% of connections are followed by
a response flow.

It is clear that the last feature, the direction of the flow, is
the feature that dominates in this projection to two dimensions.
To illustrate better the variety of clusters we decided to apply
PCA to only the first three dimensions of the feature vector,
the results can be seen in Figure 6. The remaining clusters are
not as easily separable, but it is clear that they lie on different
parts of the 2-D space.

V. SUMMARY & CONCLUSIONS

This paper offers an experimental study of different ap-
proaches that a network-based IDS for AMI could use to
cope with encrypted traffic. An AMI has unique characteristics
related to the portion of traffic and packets being encrypted,
the number of service requests available, and the way session
flows are handled that make this study an important step
towards achieving the twin goals of confidentiality and security
monitoring. In particular, we found that fingerprinting devices
and watching for the periodicity of meter requests were good
candidates to alert on suspicious activity. We also found that
the 30,000-meter operational AMI used in our study was
too dynamic to train a connectivity graph baseline over 2



Figure 5. PCA with 2 components retaining 98% of variance

Figure 6. PCA of clustered packets with k=6

days of traffic. By extracting feature vectors representing
connection flows we were able to identify several anomalies
(e.g., packets with multiple C12.22 payloads), and rules of
“normal” behavior, such as the size of reply packets being
lower than 200 bytes, or that bidirectional communications
have request packets with sizes smaller than 800 bytes.

Table VI provides a summarized mapping between the
different approaches investigated in this paper and the types
of malicious behavior they can detect.

As the next step, we plan to increase the length of our
data collection to confirm our exploratory data analysis, and
to measure the security of IDS rules for encrypted packets
against adversaries that will try to evade them.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the
Department of Energy under Award Number DE-OE0000097 and by
Fujitsu Laboratories of America. The opinions expressed are those
of the authors alone.

Attacks Period. Fingerpr. Graph Clustering

Traffic tampering

Traffic injection

Replay attack

Authentication abuse

Spoofing

Rogue device

Compromised meter

Resource exhaustion

Table VI
MAPPING BETWEEN INTRUSION DETECTION TECHNIQUES AND

DETECTABLE ATTACKS DESPITE ENCRYPTION

REFERENCES

[1] M. Q. Ali and E. Al-Shaer. Configuration-based ids for advanced
metering infrastructure. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer &#38; Communications Security, CCS ’13,
pages 451–462, New York, NY, USA, 2013. ACM.

[2] L. Bernaille and R. Teixeira. Early recognition of encrypted applications.
In Passive and Active Measurement Conference (PAM), Proc., pages
165–175, Louvain-la-Neuve, Belgium, April 2007.

[3] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian.
Traffic classification on the fly. SIGCOMM Comput. Commun. Rev.,
36(2):23–26, 2006.

[4] L. Bernaille, R. Teixeira, and K. Salamatian. Early application identi-
fication. In Conference on Future Networking Technologies (CONEXT
2006), Proc., page 6, 2006.

[5] R. Berthier, J. G. Jetcheva, D. Mashima, J. H. Huh, D. Grochocki,
R. B. Bobba, A. A. Cárdenas, and W. H. Sanders. Reconciling
security protection and monitoring requirements in advanced metering
infrastructures. In Smart Grid Communications (SmartGridComm), 2013
IEEE International Conference on, pages 450–455. IEEE, 2013.

[6] R. Berthier and W. H. Sanders. Monitoring advanced metering infras-
tructures with amilyzer. In Cyber-security of SCADA & industrial control
systems. C&ESAR, 2013.

[7] M. Hoeve. Detecting intrusions in encrypted control traffic. In
Proceedings of the first ACM workshop on Smart energy grid security,
pages 23–28. ACM, 2013.

[8] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel
traffic classification in the dark. SIGCOMM Comput. Commun. Rev.,
35(4):229–240, 2005.

[9] R. Koch and G. D. Rodosek. Command evaluation in encrypted remote
sessions. In Network and System Security (NSS), 2010 4th International
Conference on, pages 299–305. IEEE, 2010.

[10] S. McLaughlin, D. Podkuiko, S. Miadzvezhanka, A. Delozier, and
P. McDaniel. Multi-vendor penetration testing in the advanced metering
infrastructure. In 26th Annual Computer Security Applications Con-
ference (ACSAC), Proc., pages 107–116, New York, NY, USA, 2010.
ACM.

[11] A. D. Montigny-Leboeuf. Flow attributes for use in traffic characteriza-
tion. Technical Report CRC-TN-2005-003, Communications Research
Centre, Canada, December 2005.

[12] A. W. Moore and D. Zuev. Internet traffic classification using Bayesian
analysis techniques. In SIGMETRICS ’05: Proceedings of the 2005 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pages 50–60, New York, NY, USA, 2005. ACM
Press.

[13] A. Snyder and M. Stuber. The ANSI C12 protocol suite - updated
and now with network capabilities. In Power Systems Conference: Ad-
vanced Metering, Protection, Control, Communication, and Distributed
Resources, 2007. PSC 2007, pages 117–122, 2007.

[14] M. Zalewski. p0f v3: passive fingerprinter, 2012.
http://lcamtuf.coredump.cx/p0f3/README.




