
OpenADR 2.0 Deployment Architectures: Options

and Implications

Ulrich Herberg, Daisuke Mashima, Jorjeta G. Jetcheva, Sanam Mirzazad-Barijough

Fujitsu Laboratories of America

1240 East Arques Avenue

Sunnyvale, CA, 94085, USA

{uherberg, dmashima, jjetcheva, sanam}@us.fujitsu.com

Abstract—OpenADR 2.0, an internationally-recognized stan-
dard for Automated Demand Response (ADR), defines the inter-
action between an ADR server and client, but does not specify
all the possible multi-tier deployment architectures that are valid
relative to the standard’s specification. In this paper, we analyze
the properties of a number of OpenADR-based architectures that
have been proposed for deployment by ADR vendors, in terms
of interoperability (compliance with the standard), scalability,
complexity, and security, with the goal of helping utilities and
third party DR aggregators make informed decisions about their
planned ADR deployments to ensure high performing, future-
proof, and secure DR services.

I. INTRODUCTION

Demand Response (DR) is a service utilized by utility

companies, Independent System Operators (ISOs) [1], and

third party service providers [2], [3], to signal electricity

customers to curtail their electricity usage temporarily in order

to alleviate peak demand and to balance electricity supply

and demand [4], [5]. While DR has been in use for many

years, it was typically triggered manually by calling, emailing,

or texting electricity customers. More recently, complexity of

balancing the power grid has increased due to the introduction

of intermittent renewable technologies and distributed energy

(generation) resources (DERs) [6]. Moreover, due to ever

increasing peak demand and peak electricity prices, automated

DR (ADR) has attracted significant attention [7], leading

to the development of OpenADR 2.0 [8], an internationally

recognized standard for ADR. OpenADR 2.0 is developed by

the OpenADR Alliance, with certification programs released

in mid-2013, and published by the International Electrotech-

nical Commission (IEC) as Publicly Available Specification

(PAS) [9]. Since then, multiple vendors have received official

certification for their OpenADR servers and clients [10], and

a number of utilities have started deploying or planning pilot

projects using OpenADR-compliant products as found in [11].

The OpenADR specification defines only the basic inter-

action between an OpenADR server and client, and does

not specify all the possible deployment architectures that are

valid within the scope of the standard. This has led to the

proliferation of proposed deployment architectures within the

vendor community, some of which may not be compliant with

the OpenADR 2.0 standard, and others whose performance and

security implications may not be immediately obvious.

In this paper, we analyze the properties of the OpenADR-

based architectures that have been proposed for deployment

within the standard itself and by vendors of DR solutions or

discussed informally within the OpenADR community. Our

goal is to highlight the pros and cons of representative architec-

tures in terms of interoperability, scalability, complexity, and

security, and help utilities and third party DR aggregators make

informed decisions about their planned ADR deployments to

ensure high performing, future-proof, and secure DR services.

II. OVERVIEW OF OPENADR

There are currently two profiles of OpenADR 2.0: 2.0a for

simple devices (e.g., thermostats), and 2.0b for full-featured

energy management solutions (e.g., energy management sys-

tems and DR aggregators). In the following, we discuss some

specifications of these profiles.

A. Communication Model

Figure 1. Example of tiered architecture of OpenADR nodes.

OpenADR defines a communication model between a DR

server, also referred to as Virtual Top Node (VTN), operated

by an electric utility or other types of DR service providers,

and DR clients, referred to as Virtual End Nodes (VENs). A

VEN is typically a gateway that controls one or more devices,

called Resouces, that are the actual consumers of electricity

and may participate in DR. Instead of a gateway, a VEN may

also be a software module co-located on an end-device (e.g., a

smart thermostat) directly controlled via OpenADR. Usually, a

VEN controls Resources using protocols other than OpenADR,

allowing the overall deployment to include both OpenADR-

capable devices and devices supporting only other protocols.

OpenADR nodes are organized in a tree. An example is

shown in Figure 1. In the simplest case, a tree has only one

VTN-VEN pair, i.e., one tree hop (see Section III-A). More

generally, there can be multiple hops, which may involve

service providers for DR communication (see Section III-C).

In such a case, intermediate nodes, such as node 2, 3, and 6

in Figure 1 may have both VTN and VEN functionalities.

As transport mechanisms, OpenADR supports HTTP and

XMPP, the latter of which is best known as an online chat

protocol. For HTTP, two communication modes are defined:

PULL and PUSH. In HTTP PULL, communication is always

initiated by a VEN, periodically polling for new messages.

This allows connections from VENs that are behind firewalls

and Network Address Translations (NATs). However, the

PULL mode may cause significant communication overhead

because of the periodic polling (refer to Section III-A for a

study of the overhead). On the other hand, the HTTP PUSH

mode allows both VEN and VTN to initiate communication

whenever necessary, and thereby network traffic can be mini-

mized. However, it requires a VEN to implement HTTP server

functionality and to keep listening on an open port, which

is often impractical when firewalls/NATs are used and might

raise security concerns. PUSH mode is also implemented on

XMPP so that we can avoid the issue with firewalls since

XMPP provides client-initiated long-lasting TCP sessions that

enable communication to and from behind firewalls and NATs.

B. Messages and Services

Message payloads in OpenADR are defined by an XML

schema. OpenADR 2.0b provides four services, EiEvent, EiRe-

port, EiRegisterParty, and EiOpt, and defines a different set

of messages for each service. Among them, we provide some

details of the first two services that are relevant to this paper.

EiEvent: DR events are sent from a VTN to a VEN to signal

the VEN to reduce the electricity load of Resources attached

to it. An event signal contains, amongst others, a start time,

duration, and information about the amount of curtailment

or updated electricity price. The VEN confirms or rejects

participation in the event in its response message.

EiReport: Reports are usually sent from a VEN to a VTN to

report the energy consumption or the status of Resources con-

nected to the VEN. OpenADR supports history reports convey-

ing a series of data points recorded in the past, and telemetry

reports used for real-time reporting, which are periodically sent

in a certain interval. The VEN first registers all of its reporting

capabilities (sampling frequency, unit of measurement, amount

of data buffered, Resources controlled by it, etc.) to the VTN

in a METADATA report. Based on the capability information,

the VTN can request appropriate reports when necessary. In

the 2.0b profile, no incremental/decremental report capability

registration is supported, so all capabilities must be registered

at once. In other words, whenever changes in the capabilities

occur (e.g., a Resource is added or removed), this registration

process has to be repeated by sending all reporting capabilities.

C. Security

For all message exchanges in OpenADR, use of Transport

Layer Security (TLS) with client authentication is mandated

for mutual authentication as well as message integrity and

confidentiality protection. The OpenADR 2.0 specification

requires all nodes (both VTNs and VENs) to be equipped

with public/private key pairs and digital certificates issued

by a trusted Certificate Authority (CA), which implies that

vendors have to pay nominal per-device cost for issuance and

management of certificates. Communicating peers are required

to authenticate each other by using the digital certificates.

Regarding authentication of VENs, the OpenADR specifica-

tion requires to use the identifier of the VEN (venID) and some

unique information derived from the VEN’s digital certificate,

e.g., a SHA fingerprint of the certificate. In order for a VTN

to verify that a sender of an incoming message is actually

the VEN whose venID is claimed in the payload, the VTN

should perform validation of a one-to-one mapping between

the venID and the digital certificate.

III. ARCHITECTURES

In this section, we discuss the various proposed OpenADR

deployment architectures and analyze each option in terms of

interoperability (compliance with the OpenADR specification),

scalability, complexity, and security.

A. Basic Two-Tier Architecture

The basic architecture of OpenADR is specified in [8], [12]

and consists of a single VTN communicating with one or

multiple VENs.

This architecture assumes that the utility/ISO directly com-

municates with all DR customers, and has full transparency

and direct control of all VENs, i.e., it can send events to each

individual VEN, and moreover, individual Resources attached

to each specific VEN are enrolled with the VTN.

As DR proliferation in the residential and small and

medium-sized business (SMB) sector increases, the total num-

ber of DR customers and thus VENs may become significant,

e.g., in the range of tens and hundreds of thousands, and

even millions. This configuration would pose a significant

scalability challenge for this architecture. In this regard and

to motivate the later discussions about advanced architectures,

by using our OpenADR 2.0b-certified implementation, we

measured the amount of typical network traffic for OpenADR

communication when distributing DR events using the EiEvent

service and reporting energy consumption via the EiReport

service. This experiment was conducted in the local area

network, and we measured the packet sizes in TLS sessions

associated to these services. As the focus of this evaluation

is placed on evaluating and estimating the volume of data

communication, and not on the response time / delay, etc.,

an extrapolation to larger numbers of participating nodes is

justified. The results are summarized in Figure 2 and Figure 3.

Assuming that one DR event is issued every day, we

measured the amount of network traffic between a VTN and

a VEN, and extrapolated the results to increasing number of

VENs. All measurements are based on packet dump of TLS

traffic and include overhead for TCP and TLS handshake.

Regarding the polling frequency for the PULL mode, we

considered a one second interval, which is expected to be a

requirement for Fast DR or ancillary service implementation,

to a one hour interval, which is usually sufficient for typical

DR services. Regarding the number of nodes, we consider up

of VENs per VTN

N
e
tw

o
rk

 T
ra

ff
ic

 t
o
/f
ro

m
 a

 V
T

N
 p

e
r

D
a
y
 [
G

B
y
te

s
]

PULL (1−second Interval)

PULL (1−minute Interval)

PULL (1−hour Interval)

PUSH

0
.0

0
1

1
1
,0

0
0

1
,0

0
0
,0

0
0

1 100 10,000 1,000,000

Figure 2. Estimated communication overhead for DR event distribution (in
logarithmic scale)

to 1,000,000 nodes. Given that large utility companies in the

US have millions of customers, this number is not unrealistic.

The difference in overhead between HTTP PUSH and

XMPP PUSH was negligible, thus in the figure we only

show the result of HTTP PUSH. The overhead of the PULL

mode is significantly higher than PUSH since, regardless of

whether a DR event is prepared for a VEN or not, VENs

are required to inquire the VTN at a pre-determined interval

for new messages. In the case of one second interval polling,

86,399 polling requests return empty responses while only one

per day returns DR event information. As a result, including

event acknowledgment messages from VENs, approximately

100 TByte traffic per day could be generated in the case of

one million VENs.

of VENs per VTN

N
e
tw

o
rk

 T
ra

ff
ic

 t
o
/f
ro

m
 a

 V
T

N
 p

e
r

D
a
y
 [
G

B
y
te

s
]

1−minute Interval
5−minute Interval
15−minute Interval

0
.0

0
1

1
1
,0

0
0

1 100 10,000 1,000,000

Figure 3. Estimated communication overhead for periodic telemetry reporting
(in logarithmic scale)

To measure communication overhead for reporting, we

focused on periodic telemetry reports, each of which conveys

one meter reading. We considered three reporting intervals,

1 minute, 5 minutes, and 15 minutes. The report traffic

contains report data and associated metadata sent by a VEN

and confirmation from a VTN. The amount of traffic would

exceed the order of 1 TByte when a VTN is handling over

one million VENs even with a five-minute reporting interval.

Also, if a single report payload contains more data points, the

overhead will become even larger.

In addition to consuming bandwidth, sending a large number

of individual messages results in increased latency at a VTN as

messages are sent serially by the network interface. Moreover,

the number of TCP states and database connections that a

VTN needs to handle and computational cost for frequent TLS

handshake are also issues to be considered. These problems

can be alleviated by well-established engineering efforts, such

as a load balancer, and / or alternative system architectures,

which will be discussed later.

B. Two-Tier Architecture with XMPP

When XMPP is used instead of HTTP, communication is

not established directly between a VTN and a VEN, but both

are communicating as XMPP clients via an XMPP server

(Figure 4). Communication between the VTN and XMPP

server, as well as between the XMPP server and the VEN

are respectively secured via TLS. However, the lack of end-

to-end security implicitly requires that the XMPP server must

be under control of and fully trusted by the entity operating

the VTN (e.g., the utility or ISO).

Figure 4. XMPP server architecture

In addition, as TLS is used pairwise between the VEN and

the XMPP server as well as the XMPP server and the VTN, the

VTN cannot access the VEN’s digital certificate used for the

TLS handshake (with the XMPP server). Therefore, it is not

straightforward for the VTN to verify the mapping between the

venID found in the incoming message payload and the digital

certificate, which may require additional mechanisms on the

VTN and/or XMPP server to meet the security requirements

described in Section II-C.

C. Basic Three-Tier Architecture

The basic three-tier architecture of OpenADR is depicted

in Figure 1 (e.g., the tree consists of nodes 1, 2, and 4)

and includes a DR aggregator or other type of 3rd party

such as a cloud-based Building/Home Energy Management

System (BEMS/HEMS) provider between the utility and the

customers [13].

The utility has a single OpenADR connection to the im-

mediate intermediary (e.g., a DR aggregator), which in turn

serves both as a VEN (towards the utility) and as a VTN

(towards the customers). This use case is advantageous for

utility companies that are interested in outsourcing customer

recruitment and infrastructure deployment for communicating

with a large number of customer VENs. The utility may

also want to rely on sophisticated algorithms, devised by

specialized DR aggregators, for selecting optimal customers

to participate in specific events.

From an architecture standpoint, the constraints on the

aggregator are the same as in the two-tier architecture. In

addition, the three-tier architecture gives rise to a new end-

to-end security concern since OpenADR ensures mutual au-

thentication and message integrity only for each hop; an end-

customer receiving a DR event from the aggregator cannot

directly verify whether this event was initially sent out by the

trustworthy utility. Recently, one solution for this issue has

been proposed to establish verifiable DR signal distribution

path in multi-hop DR communication [14].

Concerning interoperability, the interface inside the aggrega-

tor between the VEN towards the utility and the VTN towards

the customers is not specified in any standard. Therefore,

each aggregator could interpret incoming events differently

and then create equivalent events that are sent to the customers.

For instance, if the utility sends an event to the aggregator

with a LOAD_DISPATCH signal of 10 MW, the aggregator

could select a certain number of its customers and then send

events to each of them with a particular amount of required

curtailment (e.g., 5kW). In this way, a DR aggregator has to

“translate” the incoming event and then create new events sent

to the end customers. For some of the payload elements of

the DR event, such as marketContext (i.e., definition of a DR

program), duration of the event, ramp-up and recovery, etc., it

is unspecified how this translation has to be performed by the

aggregator, which will likely lead to a different outcome for

each implementation of translation by an aggregator.

D. Hybrid Device Deployment Architecture

Deployment scenarios may arise where some Resources

within the customer premises are OpenADR-compliant (e.g.,

thermostats with built-in OpenADR VEN) and are only con-

trollable through OpenADR, while others are not (e.g., a Smart

Energy Profile (SEP) 2.0-based refrigerator). Non-OpenADR-

compliant devices are typically implemented as Resources,

whereas OpenADR-compliant devices are OpenADR VENs

as software module on the same Resource. In order to provide

grouping of Resources, both types of devices may need to be

controlled by a single gateway device, e.g., HEMS or BEMS,

which is seen as a VEN from the utility’s perspective. This

motivates the architecture shown in Figure 5.

This architecture is fully legitimate in terms of the Open-

ADR specification and allows higher flexibility for selection

of end devices while maintaining a single point of control for

customers’ convenience. From the utility’s point of view, it

needs to handle only one VEN per customer’s premise. On

the other hand, its downside is that it may be too complex to

implement on some of the more resource-constrained home

gateway devices, as a VTN implementation is a lot more

complex than a VEN.

E. Vendor Cloud

Figure 6 shows an architecture with a device vendor cloud

interface in-between the utility and customers. The device

vendor provides a single cloud-based VEN, whereas the cus-

tomers’ devices (e.g., thermostats) manufactured by the vendor

are represented as OpenADR Resources. This implies that

OpenADR itself is only used between the utility VTN and

Figure 5. Hybrid device deployment architecture

the vendor-owned cloud-based VEN, and another (often pro-

prietary) protocol enables communication between the VEN

and the customers’ devices1. When the utility sends an event

to the VEN, the VEN translates the incoming signal into this

other protocol and sends it out to the Resources. This use case

is in deployment by several smart thermostat companies [15].

Figure 6. Vendor cloud architecture

As the VTN has only one OpenADR connection per vendor,

this architecture provides significant complexity and scalability

advantages to the utility. Instead, the responsibility for han-

dling DR-related coordination is delegated to device vendors.

In particular, when the cloud-based VEN receives an event

from the utility VTN, the VEN has to create a payload in the

proprietary format, select customers to send the event to, and

then distribute the event to the selected customers.

Segmenting control across multiple DR service provider

entities based on device type, and thus having each device

in a customer’s home be controlled by a separate DR provider

may be undesirable as customers’ burden for the curtailment

cannot be optimally amortized. For example, one customer can

experience multiple concurrent curtailments (one per vendor),

whereas another may experience none, when it may have been

less disruptive to curtail both but by a smaller amount. In

order to avoid this, the utility would have to group Resources

inside a single household accessible via VENs from different

vendors, and to coordinate events sent via these vendors. This

may eliminate the benefits of this architecture, which are to

insulate the utility from having to deal with the scalability and

complexity issue of managing all customer devices directly.

When the utility wants to receive a report from a particu-

lar customer device (rather than just aggregated/summarized

reports from the vendor), another technical issue must be con-

sidered. As explained in Section II-B, all report capabilities of

1While proprietary protocols are predominant for current products on the
market, protocols such as SEP2.0 may provide a standard-based alternative
in the future.

a VEN, including information of Resources associated with it,

must be registered through a single METADATA report. How-

ever, owing to the lack of support for incremental/decremental

report registration in OpenADR 2.0, whenever a customer

device is added or removed from the list (e.g., because the

customer turns off the thermostat), then the complete list of

all available reports must be resent. We generated sample

METADATA report payloads based on the OpenADR 2.0b

schema. With typical parameters, one METADATA report

contains about two kilobytes of data per registered report

(in XML, encoded in ASCII). Assuming that the vendor has

1,000,000 customers, each METADATA report is about two

gigabytes in size. Since it can be assumed that customer

devices will be added or removed to/from the vendor on

a frequent basis, this may practically exclude reporting for

this architecture, unless OpenADR is amended to support

incremental report registration.

One of the main reasons to publish the OpenADR 2.0

standard was to avoid interoperability problems between pro-

prietary DR standards: customers should be able to choose

their devices from any vendor; as long as the device is

OpenADR certified, the customer can be confident that the

device is compliant with the standard. However, by introducing

a cloud service and a proprietary protocol, this interoperability

is not guaranteed anymore.

In terms of security, OpenADR mandates TLS with client

authentication. This means that the cloud-based VEN needs

only a single certificate, lowering the cost for the vendor

significantly. On the other hand, it requires that the vendor uses

its own authentication, confidentiality and integrity protection

schemes for communication with end devices. Some of the

thermostat vendors mentioned in [15] do not use encryption

at all, or at least no client authentication, exposing their system

to security threats.

F. Vendor Cloud per Household

To mitigate the drawback of the architecture discussed

in Section III-E, let us discuss one alternative depicted in

Figure 7. In this architecture, instead of using a single VEN

endpoint for all customers, one VEN instance is running in

the cloud per household (or per customer). Each customer

device then represents a Resource attached to this VEN using

a proprietary protocol, whereas the VTN and the VENs com-

municate via OpenADR. Similar to the architecture discussed

in Section III-E, this configuration may be beneficial for using

existing costumer devices as DR Resources. Also, a customer

does not need to acquire a hardware-based VEN, reducing

initial costs for setting up DR.

From a vendor’s perspective, it is feasible to increase the

number of VEN instances on the cloud. On the other hand,

since each VEN requires its own security certificate, the

vendor has higher expenses for the certificates, and managing

one VEN per customer may be more complex than setting

up a single VEN for all customers. On the utility side, this

architecture faces the same scalability issues as the basic two-

tier architecture (Section III-A) when the number of customers

Figure 7. Vendor cloud per household architecture

increases. The situation may be even worse since multiple

VENs could be allocated in a single customer’s premise.

Compared to the vendor cloud architecture presented in

Section III-E, this architecture gives the utility more control,

as each household is represented as a VEN (per vendor).

Therefore, DR events can be targeted to individual or groups of

households. Also, the issues with incremental and decremental

report registrations, described in Section III-C, do not exist, as

each VEN can register its own reports. Note that even though

this architecture shares the same interoperability issues with

the vendor-based cloud configuration, the failure of a single

VEN in the cloud results only in the disconnection of a single

household associated with this VEN and not all the customers.

G. VEN Application Server Architecture

This architecture, depicted in Figure 8 and proposed in [16],

defines a new entity (besides the VTN/VEN), which is in-

tended to serve as a single “application server” or communi-

cation end-point for a group of VENs (i.e., in terms of TCP,

DNS name, and certificate for TLS). The rationale is that

this architecture allows for reduced number of communication

streams at the VTN, which can communicate with one end-

point per group of end-points. However, the flexibility of

Resource grouping, which requires each group to be associated

with a different VEN, is maintained. This architecture may be

appealing for a customer that has multiple VENs under their

control, for example in a large-scale industrial facility.

Figure 8. VEN application server architecture

Although not explicitly mentioned by the authors in [16],

another motivation for this architecture may be to reduce the

number of required digital certificates for VENs. Namely, only

one certificate would be deployed on the VEN application

server, rather than one per VEN, lowering the installation and

operational cost of the system. While it seems attractive, the

one-to-one mapping between certificate fingerprint and venID

described in Section III-B cannot be maintained as multiple

venIDs would be associated with the same certificate finger-

print. If there is no such mapping, it becomes more difficult for

the VTN to detect venID spoofing: any VEN from the group

behind the application server could use any other venID from

this group of VENs. To avoid such potential security issues, the

VTN would be required to do additional checks for incoming

OpenADR messages, verifying that messages with different

venIDs originate from the associated IP address / DNS name,

and therefore from behind the VEN application server and

not from separate end-points. This could be done by adding

the DNS name into the Common Name field of the x.509

certificate, and with a verification of the sender IP address

towards this field. However, these are outside of the OpenADR

specification and implementing them leads to increased system

installation and maintenance complexity.

H. XMPP Server-to-Server Architecture

In the OpenADR Alliance, use of an external XMPP server

to offload the CPU and memory requirements from a VTN

onto an external entity by using XMPP server-to-server com-

munication [17] is discussed. Such an architecture is depicted

in Figure 9. In this architecture, the VTN is connected to

the utility XMPP server, which itself has one (or more)

connections to other trusted XMPP servers, e.g., hosted by

DR aggregators. As the resource requirements are shifted from

the utility VTN to an external entity in a tree-like structure,

this solution has similar scalability advantages as the three-tier

architecture described in Section III-C. XMPP server-to-server

connections are not established on-the-fly, but rather a manual

setup of certificates and trust relationships is required.

Figure 9. XMPP server-to-server architecture

Regarding security, responsibilities for authentication and

secure communication are completely shifted from the utility

XMPP server towards the external XMPP server, which is

outside of utility’s control: as described in Section III-B,

authentication of VENs is done at the immediate XMPP server

that VENs are connected to. In this scenario, the utility XMPP

server can only verify that incoming payload comes from the

“trusted” external XMPP server. The utility has no way of

verifying the authenticity of the VEN or to match the venID

with a certificate fingerprint. Thus, if the utility suspects that a

VEN is compromised etc., the only countermeasure the utility

can take is to revoke the external XMPP server’s certificate,

thereby blocking all VENs connected via the XMPP server.

Setting up the trust relationship via multiple XMPP servers

and handling revocation of complete XMPP servers increases

complexity of this architecture compared to the one presented

in Section III-B. In order to alleviate the complete shift of trust

from the utility to an external entity, a utility could require

VENs to use XML Signatures (as defined in the OpenADR

2.0 specification). However, this may not be realistic in case

of resource-constrained VENs, and so far no certified product

implements this feature (to the best of our knowledge). Use

of XMPP extensions for end-to-end confidentiality protection

like [18] would help, but they are not defined in OpenADR

2.0b, resulting in compatibility issues.

IV. CONCLUSION

In this paper, we presented our analysis of the properties

of the OpenADR-based architectures that have been proposed

for deployment within the standard itself and also by vendors

of DR solutions, and highlighted the pros and cons of each

architecture in terms of interoperability (compliance with the

OpenADR specification), scalability, complexity, and security.

We hope that our observations and conclusions would help

utility companies and third party DR aggregators make in-

formed decisions about their planned ADR deployments to

ensure high performing, future-proof, and secure DR services.

As a future work, it is desired to conduct experiments for

each architecture to provide more quantitative evaluations and

comparisons in terms of performance and overhead.

REFERENCES

[1] Federal Energy Regulatory Commission, “Regional Transmission
Organizations (RTO)/Independent System Operators (ISO),”
http://www.ferc.gov/industries/electric/indus-act/rto.asp.

[2] EnerNOC, Inc., http://www.enernoc.com.
[3] Comverge, Inc., http://www.comverge.com.
[4] M. Albadi and E. El-Saadany, “A Summary of Demand Response in

Electricity Markets,” Electric Power Systems Research, vol. 78, no. 11,
pp. 1989–1996, 2008.

[5] V. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and
G. Hancke, “Smart Grid Technologies: Communication Technologies
and Standards,” Industrial Informatics, IEEE Transactions on, vol. 7,
no. 4, pp. 529–539, 2011.

[6] S. Kiliccote, P. Sporberg, I. Sheikh, E. Huffaker, and M. A. Piette,
“Integrating renewable resources in California and the role of auto-
mated demand response,” 2010, Lawrence Berkeley National Laboratory,
Berkeley, CA.

[7] E. Koch and M. A. Piette, “Architecture Concepts and Technical Issues
for an Open, Interoperable Automated Demand Response Infrastructure,”
in Grid Interop Forum, 2007.

[8] OpenADR Alliance, “OpenADR 2.0 Profile Specification B Profile,”
2013, http://www.openadr.org/specification.

[9] International Electrotechnical Commission (IEC), “PAS 62746-10-1: [...]
OpenADR 2.0b Profile Specification,” 2014.

[10] OpenADR Alliance, “OpenADR 2.0 Certified Products,”
http://www.openadr.org/certified-products.

[11] Demand Response Research Center, http://drrc.lbl.gov/.
[12] OpenADR Alliance, “OpenADR 2.0 Profile Specification A Profile,”

2012, http://www.openadr.org/specification.
[13] E. Koch and S. Kiliccote, “Role of Standard Demand Response Signals

for Advanced Automated Aggregation,” in Proceedings of the Grid-

Interop, 2011.
[14] D. Mashima, U. Herberg, and W.-P. Chen, “Enhancing Demand Re-

sponse Signal Verification in Automated Demand Response Systems,” in
Proceedings of the 5th Innovative Smart Grid Technologies Conference.
IEEE PES, 2014.

[15] Navigant Research, “Automated Demand Response,” 2014.
[16] IPKeys Technologies LLC, “OpenADR 2.0 VEN Concepts,” 2013,

available through OpenADR Profile WG mailing list archive.
[17] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):

Core,” 2004, http://tools.ietf.org/html/rfc3920.
[18] “Off-the-Record Messaging Protocol Version 3,”

https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html.

